

Использование Microsoft Excel для построения регрессионных зависимостей

Установка «Пакета анализа» (Office 2007)

Если «Пакет анализа» и «Поиск решения» не установлен:

- Щелкните значок Кнопка Microsoft Office () а затем Параметры Excel
- Выберите команду Надстройки
- В окне Управление выберите пункт Надстройки Excel
- Нажмите кнопку Перейти.
- Установите флажки Пакет анализа и Поиск решения
- Нажмите ОК

Регрессионный анализ

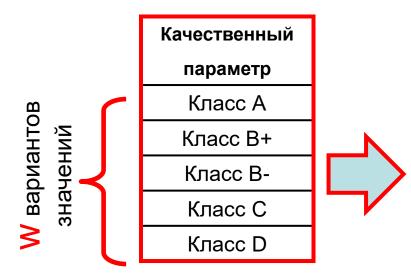
Регрессионный анализ - раздел математической статистики, объединяющий практические методы исследования регрессионной зависимости между величинами по статистическим данным. Цель Регрессионного анализа состоит в определении общего вида уравнения регрессии, построении оценок неизвестных параметров, входящих в уравнение регрессии, и проверке статистических гипотез о регрессии. ...


$$\mathbf{Y} = \mathbf{f}(\mathbf{X}) + \boldsymbol{\xi}$$

- Y зависимая переменная (отклик)
- X независимые переменные (факторы, параметры, предикторы, признаки)
- ξ случайная величина (ошибка эксперимента)
- [y_i; x_{i1}; x_{i2};... x_{1m}] наблюдение (данные по і-му аналогу)
- n объем выборки (количество наблюдений)
- т число факторов

y1	X11	x12		x1m	
y2	x21	x22		x2m	
у3	x31	x32	:	x3m	
yn	xn1	xn2	:	xnm	

$$y = a_1 * x_1 + a_2 * x_2 + ... + a_m * x_m + c$$


Качественные переменные могут «маскироваться» под количественные:

Этаж расположения - 1. «первый», «последний», «средние этажи» или 2. «крайние этажи» и «средние этажи»

Оцифровка качественных параметров:

замена бинарными признаками

Бинарные признаки				
Класс А	Класс В+	Класс В-	Класс С	
1	0	0	0	
0	1	0	0	
0	0	1	0	
0	0	0	1	
0	0	0	0	

увеличение числа переменныхнет необходимости в оптимизационных процедурах

(W-1) Бинарных признаков

Оцифровка качественных параметров:

замена порядковыми переменными

Порядковый		
параметр		
4		
3		
2		
1		
0		

«+»

не увеличивает число переменных

((-)


обычно требуется проведение оптимизационных процедурах

Оцифровка качественных параметров:

ранжирование по внешним данным

Качественный параметр
Класс А
Класс В+
Класс В-
Класс С
Класс D

3,08 1,92 1,40 1,20
1,40
·
1,20
,
1,00

Арендная ставка*, долл. / кв. м
770
480
350
300
250

^{* -} R-Way, №171 июнь 2009 г.

«+»

не увеличивает число переменных

((-)

необходимость использования (поиска) внешних данных

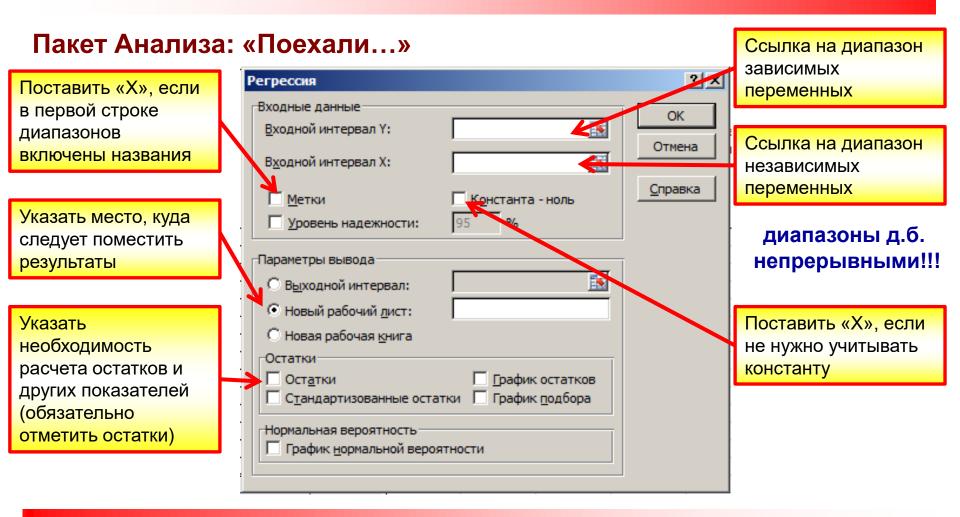

Взаимовлияние качественных параметров

Алгоритм действий

Пошаговый регрессионный анализ:

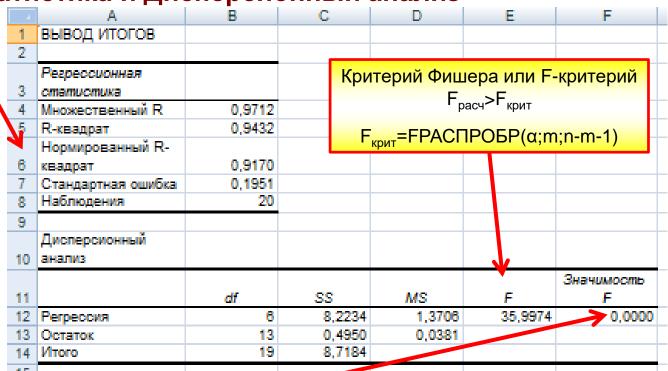
- 1. Последовательное исключение в модели незначительных переменных
- 2. Последовательное включение в модель переменных

Предположение о влияющих факторах и виде функции


- В качестве зависимой переменной лучше выбрать не «Стоимость объекта», а «Удельную стоимость»
- Корреляционная матрица поможет выбрать влияющие параметры (а также выделить взаимозависимые факторы)
- Графики Y-X_і для количественных переменных могут помочь определить вид зависимости
- Переменные-агрегаты могут уменьшить число
 переменных и/или исключить мультиколлинеарность:

Вместо «Площадь» и «Площадь ЗУ» – «Плотность застройки» Вместо геометрических размеров – «Объем»

Вместо «Диаметр трубы», «Толщина стенки» и «Давление» – «Масса металла»


... Выбор единиц сравнения должен быть обоснован оценщиком... (ФСО-1, п. 22а)

Регрессионная статистика и Дисперсионный анализ

Шкала Чеддока		
R ²	Характеристика силы связи	
0,1-0,3	Слабая	
0,3-0,5	Умеренная	
0,5-0,7	Заметная	
0,7-0,9	Высокая	
0,9-0,99	Весьма	
0,5 0,55	высокая	

Вероятность признать влияние факторов значимым при отсутствии такового влияния. Должна быть меньше стандартных уровней доверительной вероятности (например, 0,05).

Несколько важных замечаний про R²

Коэффициент детерминации R² - оценка качества ("объясняющей способности") уравнения регрессии, показывает долю объясненной дисперсии зависимой переменной у.

Высокое значение R² не свидетельствует о хорошем качестве модели.

Низкое значение R² может объясняться не включением в модель существенных факторов.

Показатели R² в разных моделях с разным числом переменных и/ или наблюдений не сравнимы

$$R^{2} = 1 - \frac{\sum (y_{i} - \hat{y}_{i})^{2}}{\sum (y_{i} - y)^{2}}$$

 ${f y_i}$ - наблюдаемое значение зависимой переменной у,

ŷî - значение зависимой переменной,
 предсказанное по уравнению регрессии,
 у - среднее арифметическое зависимой переменной.

Коэффициент детерминации нормированный — скорректированный на число степеней свободы. Скорректированный R² ограниченно сравним в разных моделях (с разным набором факторов и/или наблюдений)

$$R_{ckop}^2 = 1 - (1 - R^2) * \frac{n-1}{n-m-1}$$

R² - коэффициент детерминации;

m - число переменных, вошедших в модель

n - число наблюдений

Анализ коэффициентов модели

Искомые коэффициенты модели.
Должны соответствовать
«рыночным реалиям»

нтов!!!

0.1007

Проверяем знаки коэффициентов!!!

Распределение Стьюдента (t-статистика). $\mathbf{t}_{\text{расч}} > \mathbf{t}_{\text{крит}}$ $\mathbf{t}_{\text{крит}} = \mathbf{CT}_{\text{БОДРАСПОБР}}(\alpha; \mathbf{n} - \mathbf{m} - 1)$

Верхняя и нижняя границы доверительного интервала при заданном уровне вероятности.

Должны быть одного знака.

Нижние Верхние **М**Верхние Стандартна Коэффицие Р-Значение Нижние 95% 95% 95.0% 95,0% я ошибка статистика 0.5244 28,9438 16.3118 14.0459 18 У-пересечение 15,1788 0.0000 14.0459 16.3118 Количественный -0.04710,0242 -1,94590,0736 0.09940,0052 -0.09940,0052 показатель 1 Местоположение (3 -Район 1. 2 - Район 20 2, 1 - Paŭon 3) 0/3827 0.05886,1670 0,0000 0,23560,4897 0.23560,4897 Количественный 40.87858 7251 0.130421 показатель 2. Бинарный признак 1 0,3701 0.0989

Сравнивая коэффициент с его стандартной ошибкой можно судить о его значимости. Критических значений нет. Используется **t-статистика**.

0,2868

23 Бинарный признак 2

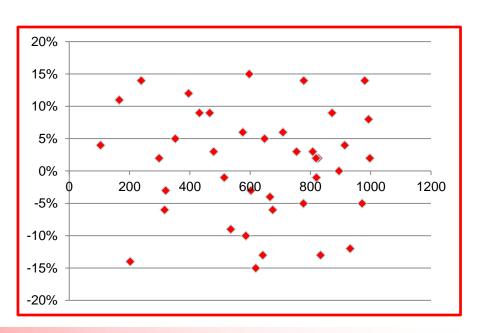
Показывает вероятность того, что t-статистика может оказаться больше наблюдаемой.

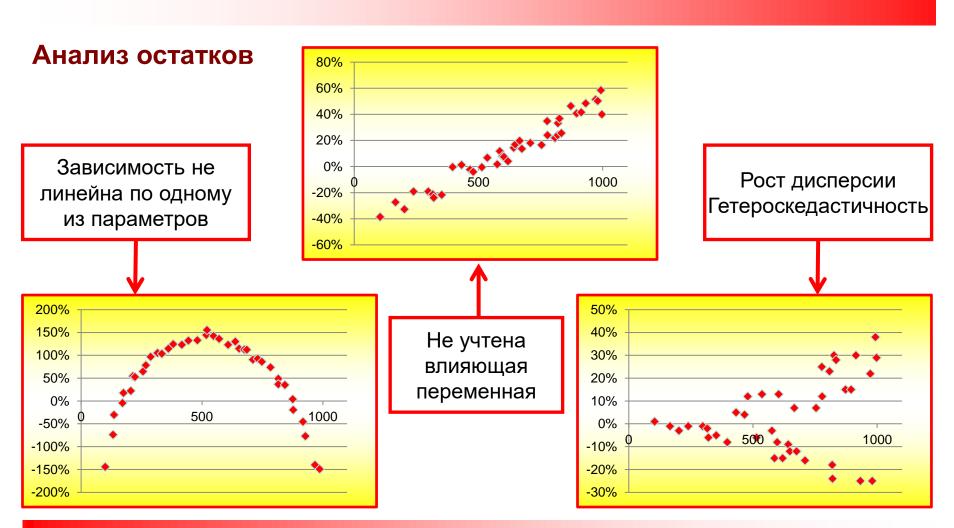
Если Р-Значение меньше α, то коэффициент значим на уровне α.

Должно быть меньше стандартных уровней доверительной вероятности (например, 0,05).

Анализ остатков

- Остатки имеют нулевое среднее
- > Зависимая переменная не коррелированна с остатками
- Наблюдаемые значения остатков не коррелированны друг с другом
- Остатки имеют постоянную дисперсию
- Остатки распределены нормально


Строим график:


Ось абсцисс: у_ф

(фактическое значение)

Ось ординат: $(y_{np} - y_{\phi})/y_{\phi}$

(относительные остатки)

Использование функции ЛИНЕЙН()

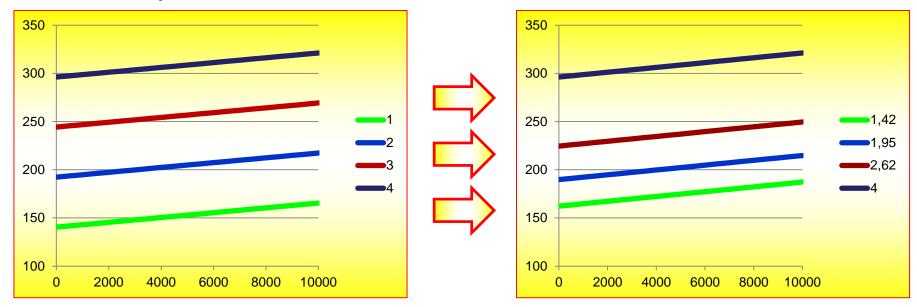
Порядок использования:

- Подготовить данные для расчетов;
- Выделить диапазон размером [5 строчек] X [m+1 колонка]
 (m – количество переменных);
- Нажать F2, ввести функцию;
- Нажать Ctrl+Shift+Enter

Синтаксис функции:

=ЛИНЕЙН(изв.у; изв.х; конст.; статистика)

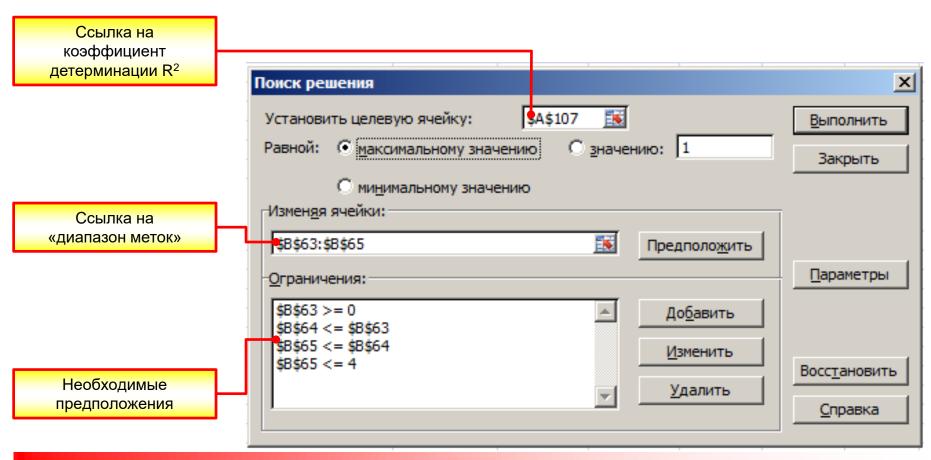
изв.у - ссылка на диапазон с известными Y; изв.х - ссылка на диапазон с известными X;


конст. - логическое значение: ИСТИНА (1) – учитывать константу

обычным образом; ЛОЖЬ (0) – константа равна нулю;

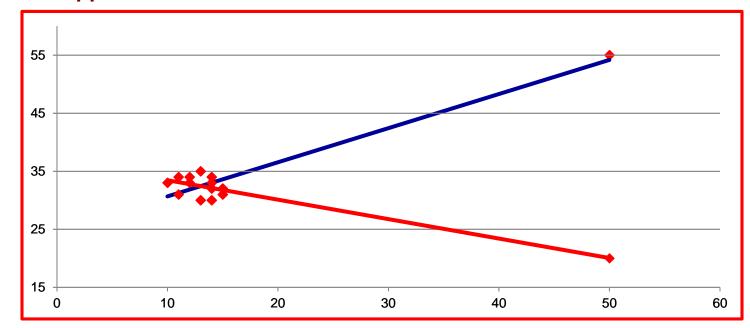
статистика - логическое значение: ИСТИНА (1) – рассчитывается дополнительная статистика; ЛОЖЬ (0) – рассчитываются только коэффициенты и константа.

Оптимизация



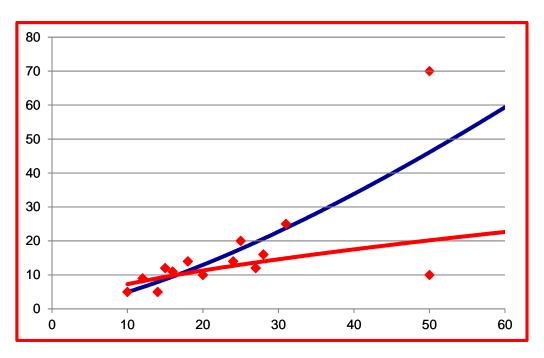
Алгоритм:

- Оцифровку качественных параметров оформить в виде ссылок на «диапазон меток»;
- Рассчитать коэффициенты и статистику при помощи функции ЛИНЕЙН;
- При помощи надстройки Excel «Поиск решения» подобрать метки, максимизируя R².



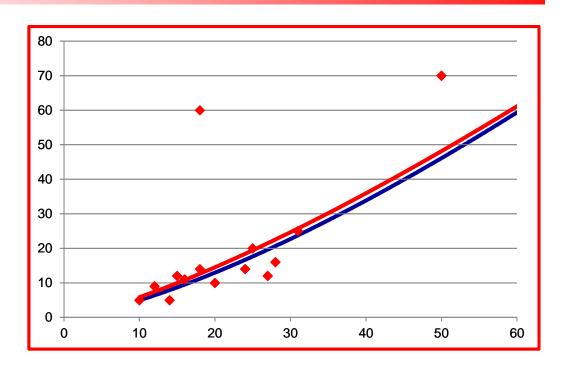
Оптимизация

X	Υ
10	33
11	34
11	31
12	33
12	34
13	30
13	35
14	32
14	34
14	30
14	33
15	32
15	32
15	31
50	55



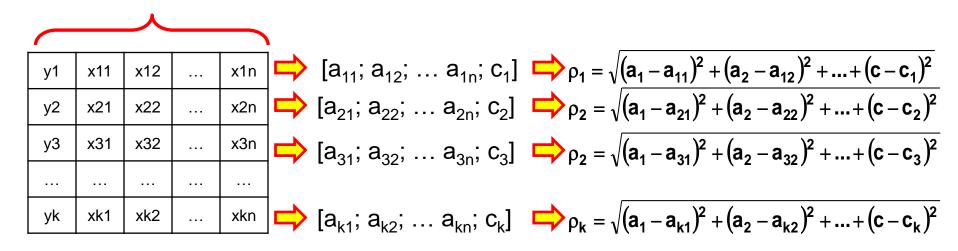
50	20
	<u> </u>

Набор аналогов	Уравнение	R ²
Синий [50;55]	y = 0.587x + 24.80	0,891
Красный [50;20]	y = -0.334x + 36.8	0,834



X	Υ		
10	5		
12	9		
14	5		
15	12		
16	11		
18	14		
20	10		
24	14		
25	20		
27	12		
28	16		
31	25		
50	70	50	10

Набор аналогов	Уравнение	R ²
Синий [50;70]	$y = 0,203x^{1,385}$	0,802
Красный [50;10]	$y = 1,693x^{0,633}$	0,360


X	Υ			
10	5			
12	9			
14	5			
15	12			
16	11			
18	14		18	60
20	10			
24	14			
25	20			
27	12			
28	16			
31	25			
50	70			

Набор аналогов	Уравнение	R ²
Синий [18;14]	$y = 0,203x^{1,385}$	0,802
Красный [18;60]	$y = 0.287x^{1.309}$	0,519

Расстояние Кука - это мера влияния соответствующего наблюдения на уравнение регрессии, показывает разницу между вычисленными коэффициентами и значениями, которые получились бы при исключении соответствующего наблюдения. В адекватной модели все расстояния Кука должны быть примерно одинаковыми; если это не так, то имеются основания считать, что соответствующее наблюдение (или наблюдения) смещает оценки коэффициентов регрессии.

$$[a_1; a_2; ... a_n; c]$$

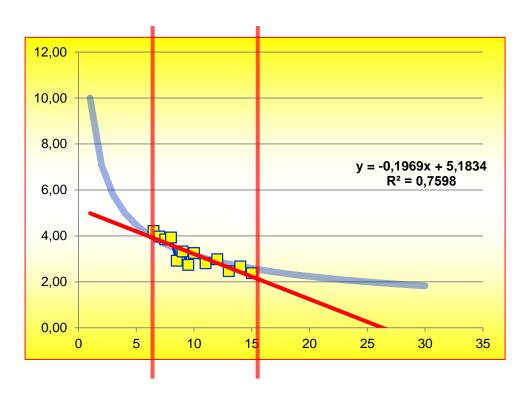
Логарифмирование

Исходные данные	Модель
y; x ₁ ; x ₂ ; x ₃	$y = A_1^* x_1 + A_2^* x_2 + A_3^* x_3 + C$
In(y); x ₁ ; x ₂ ; x ₃	In(y) = $A_1^*x_1 + A_2^*x_2 + A_3^*x_3 + C$
In(y); In(x ₁); In(x ₂); In(x ₃)	$ln(y) = A_1*ln(x_1) + A_2*ln(x_2) + A_3*ln(x_3) + C$
In(y); In(x ₁); x ₂ ; x ₃	In(y) = $A_1*In(x_1) + A_2*x_2 + A_3*$ x_3+C
y; ln(x ₁); ln(x ₂); ln(x ₃)	$y = A_1*In(x_1) + A_2*In(x_2) + A_3*In(x_3) + C$

$$y = A_1 \cdot x_1 + A_2 \cdot x_2 + A_3 \cdot x_3 + C$$

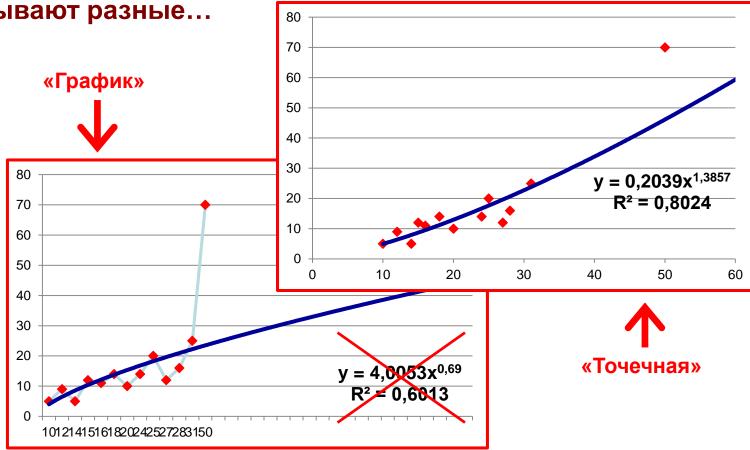
$$\mathbf{y} = \mathbf{e}^{\mathbf{A}_1 \cdot \mathbf{x}_1} \cdot \mathbf{e}^{\mathbf{A}_2 \cdot \mathbf{x}_2} \cdot \mathbf{e}^{\mathbf{A}_3 \cdot \mathbf{x}_3} \cdot \mathbf{e}^{\mathbf{C}}$$

$$y = x_1^{A_1} \cdot x_2^{A_2} \cdot x_3^{A_3} \cdot e^C$$


$$y = x_1^{A_1} \cdot e^{A_2 \cdot x_2} \cdot e^{A_3 \cdot x_3} \cdot e^{C}$$

$$y = A_1 \cdot ln(x_1) + A_2 \cdot ln(x_2) + A_3 \cdot ln(x_3) + C$$

Границы применимости


- Модель применима внутри диапазона варьирования признаков объектов-аналогов;
- Возможность применения модели за пределами диапазона варьирования признаков в каждом случае решается индивидуально, на основании анализа рынка (или сопоставления с опытом предыдущего моделирования);
- Экстраполяция по качественным признакам не возможна!!! (нельзя спрогнозировать стоимость в районе Б на основании аналогов из района А)

С экстраполяцией надо быть осторожными, т.к. применимость любой регрессионной модели ограничена, особенно, за пределами экспериментальной области.

Графики бывают разные...

X	Υ	
10	5	
12	9	
14	5	
15	12	
16	11	
18	14	
20	10	
24	14	
25	20	
27	12	
28	16	
31	25	
50	70	

Несколько полезных источников

- **Ю.Н. Тюрин, А.А. Макаров Анализ данных на компьютере** / Под. ред. В.Э.Фигурнова. 3-е изд., перераб. и доп. М.:ИНФРА-М, 2003
- > С.В. Пупенцова Модели и инструменты в экономической оценке инвестиций. СПб.: Изд-во «МКС», 2007
- > Электронный учебник StatSoft: http://www.statsoft.ru/home/textbook/
- Грибовский С.В., Баринов Н.П., Анисимова И.Н.
 - Учет разнотипных ценообразующих факторов в многомерных регрессионных моделях оценки недвижимости (http://www.appraiser.ru/default.aspx?SectionId=41&Id=1575)
- **У** Грибовский С.В., Баринов Н.П., Анисимова И.Н.
 - О требованиях к количеству сопоставимых объектов при оценке недвижимости сравнительным подходом (http://www.appraiser.ru/default.aspx?SectionId=41&Id=1577)
- **Грибовский С.В., Баринов Н.П., Анисимова И.Н.**
 - О повышении достоверности оценки рыночной стоимости методом сравнительного анализа (http://www.appraiser.ru/default.aspx?SectionId=41&Id=1578)
- Aнисимова И.Н. Отчет по НИР «Применение регрессионных методов в задачах индивидуальной оценки объектов недвижимости при сравнительном подходе» (http://www.appraiser.ru/default.aspx?SectionId=41&Id=1579)
- ▶ В.Г. Мисовец материалы лекции «Применение регрессионного анализа в оценке» http://appraiser.ru/default.aspx?SectionId=73&ProductID=334

Спасибо за внимание!

Андрей Марчук

тел. +7 495 648 95 99 E-mail info@rusvs.ru www.rusvs.ru